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The three known integrals of the Euler equations describing the subject 

motion permit, i.1 principle, the lowering of the order of the equations 
of motion from the sixth to the third, and by eliminating the independ- 

ent variable. to the second order. 

Many attempts were made to realize such order reduction. Powever, in 

a number of papers such efforts were incomplete (for example, the ob- 

tained system was of fourth order), or were subject to certain limita- 

tions (for example, requiring that the body inertia ellipsoid be an 

ellipsoid of rotation), or finally, these attempts required operations 

the results of which could not be expressed explicitely in the general 

case (for example, the solution of an algebraic equation of a general 

type of sufficiently high order). 

In the present paper, the considered problem in the general case is 

reduced to two equations of first order each. These equations are of 

simplest form in the special rectangular system of coordinates the axes 

of which, generally speaking, do not coincide with the principal axes 

of the inertia ellipsoid for the body with a fixed point. At the same 

time the Chaplygin-Kowalewski equations are generalized. The restric- 

tion on the location of center of gravity of the body is removed. 

1. Order reduction of the Euler equations. In the body-centered 

system of coordinates the time-variation of the vector x, the angular 

momentum of the body relative to its fixed point, and of the vector y 

directed along the gravity force and having the magnitude equal to the 

product of the body weight and the distance between the fixed point and 

the center of gravity, is described by the Euler equations t11 
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dxldt+oXx=exy, dy/dt+oxy=O (1.1) 

Here o is the angular velocity of the body, and e is the unit vector 

directed from the fixed point to the center of gravity of the body. 

Let us reduce the order of equations (1.1). utilizing the known inte- 
gral s 

T-e.y=h, x.y=m, y-y = ra (1.2) 

Here T = l/2 o x x is the kinetic energy of the body, and h and m are 
integration constants. From the first equation in (1.1) and the first 
integral in (1.2) we find 

y=(T- h)e$(dx/dt-J-uXx)Xe (1.3) 

Let us substitute (1.3) into the second and third integrals of (1.2) 

(dx/dt+oxx)-(eXx)+(T-h)(e.x)=m (dx/dt+w~x)~+(T-hh)Lr* (1.4) 

Also, the first equation in (1.1) yields 

e(dx/dt+oX x)=0 (1.5) 

The three equations (1.4) and (1.5) define the components of the 

vector x but do not contain y. 

If the coordinate axes are directed along the principai axes of the 

inertia ellipsoid for the body with a fixed point, and the projections 

of the vectors o, x, 7, e are respectively denoted by p, q, r; Ap, Bq, 

Cr; yls yp, y3 and el, e2, e3. then equations (1.1) and integrals (1.2) 
are expressed as 

Adp f dt + (C - B) qr = e,y, - e,y,, dyl I dt = ry, - n’s (1.6) 
WW. (PQ~). (ABC) 

l/z (A$ + Bq* + C$) - etYi = h, APY~ -I- BqY, + Cry, = m, YiYi = r” (1.7) 

The omitted equations are obtainable from (1.6) by simultaneous 
cyclic permutation of indices’and letters indicated in the parentheses. 
In (1.7) double indexing denotes summation from 1 to 3. Such shortened 
notation is also used in the sequel. 

Using the principal axes, equations (1.4) and (1.5) are 

d / dt (Ape1 + Bqe, + CreJ -I- (C - B) elqr -I- (A - C) wp f (B - A) wq = 0 
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(Cre, - Bqe,) [Adp / dt + (C - B) qrl f (Ape, - Cre,) [Bdq / dt + (A - C) rp] + 

+ (heI - Apes) [Cdr / dt 0 (B - A) pq] + 

-k (Ape, -I- Bqez + Cre,) F/z (Ap2 + Bq2 + crz) - h] = iQ (1.8) 

IAdp / dt + (C - B) qrla f [Bdq / dt f (A - C) ‘PI2 + tCdr / dt + (B - A) p712 + 

+ Pi, (Apz + Bq2 + Cr2) - h]2 = y2 

and formulas (1.3) are 

y1 = Be,dq/dt - Ce2dr/dt + [(A - B) ezq + (A - C) e,r] p + P, [I!* (Au” -7 

+ Bq2 + Cr2) - h] (123). (PQr), (ABC) 

It is more convenient to use the special rectangular system of coordi- 

nates. The first coordinate axis is directed through the center oii 

gravity of the body, while the second and third axis wiiI be directed 

so that the product yz will be missing in the expression for the kinetic 

energy of the body which is a quadratic form of the components of 

vector X(: 

T = ‘/$ (axz + a,y2 i- a2z2) i- (b,y + b,z) x 

(the constants a, aI, a*, b, and bp are determined from the mass dis- 

tribution in the body). then (1, 0, 0) are the components of the unit 

vector c 

o1 = ax + b,y $ bg, aa = sly f b,x, o 3 = a2z + b,x 

the components of the vector y are denoted as previously by yl, y2 and 

Y3* 

Equations (1.1) and integrals (1.2) referred to the special axes are 

dx / dt = (a2 - al) yz f (b,y - b,z) x (1.9) 

dy / dt = (a - a,) xz -/- (b,y -j- b,z) z - b2x2 - y3 (1.10) 

dz / dt = - (a - al) ry - (b,y f bzz) y i- b,x2 + y2 

‘I, (ax2 i- aly2 + a$) i- (b,y + b,z) x - y1 = h, SiTi = m, yiyi = y2 (1.11) 

Equation (1.5) reduces to (1.9), while equations (1.4) become 

y dz / dt - z dy / dt + (y2 + z”) (b,y + b,z) + 

+ x [(a - '/2al) y2 + (a - 1/2a2) z2] + '!,a$ - hx = m 

[(a, - a) ZZ - (b,y + b,z) z + b2x2 + dy / dtla + (1.12) 
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+ [(a, - a) xy - (b,y + b,z) y -t b,x2 - dz i dtla + 

-I- IV2 (ax2 -t a& + azz2) -t- (h,y + b2z) x - .h12 = y” 

The solutions for which x = const, are obtained from system (1.9) and 
(I. 12) only in the case’ of Lagrange [21, Hess [31, Robylev 141 and 
Steklov [Sl, and in the case of body wotion with a fixed axis. Disregard- 
ing these cases we choose x as an independent variable and reduce the 
problem to two equations of first order 

CR% - %.I YZ -k fhY - b,z) xl dy I dx -I- fna - d) x2 - (b,y + b,z) z + li,zy + 
+ (X(a, - aa) yz + (b,z - b,y) xl dz i dx + (al - a) xy - thy + kc4 Y + k+P+ 

+ [I/, (ax3 + a,yP j- a& + (b,y t blz) x - h12 - ra = 0 (1.13) 

Equations (1.13) permit interchange of the quantities y and t for 

simultaneous interchange of the indices 1 and 2. 

Fjnding the dependence of y and z on x from (1.13). the dependence 

of t on n is found from (1.9) by quadrature. The dependence of yI, y2 

and y3, or x is given by the formulas 

yl = li2 (ax2 + aly2 + a&f + (b,y + b& x - h 

72 = (a - a3 =V + (blY I- “zz) y - b,za + i(az - a,) yz -k (5%~ - b1.z) xl dz / dx 

ri = (a - a%) XE i_ (bly + b,z) z - b2x2 + [(al - a,) YZ -k (bg - bny) ~1 dy / d2 

which were obtained from (1.101, (1.11) and (1.9). 

The equations indicated by Hess c31 follow from (1.8). ~slOgous~y, 

re find from (1.13) t!lat 

(y2 -I- z”) ita2 - al) yz i- (bay - b,z) 21 dy I ds = 

= (y2 +- 22) [(a - 6%) 2.T + (b,Y + b,z) 2 - b&I -E- 

-% xz [Ii2 (ax2 -$- aIy2 4 a#) i- (b,y f b,z) x - h] - mz + gR 

fy2 -{- z2) [(al - a%) yz + fb,z - b,y) x] dz /’ dx = 

= (y2 + z2) [(a - al) xy -I- (&y + b,z) y - b,x21 + 

f xy [l/z (a,’ i- a,y2 -k a2z2) -i- (b,y f b._+) x - h] - my - ZR 

where 

R% =: (~2 f z*) r”.-j- 2mx [l/% (ax2 + aIya + azz2) + (b,Y + b,z) x - hl - 

- (x2 + y2 + 3) (I/, (as2 + aly2 + a223 + (b,y -t b,z) x - hla - mt 
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2. Equations of motion in oblique coordinates. Let us refer to the 

body a rectilinear oblique system of coordinates with the origin at the 

fixed point. The directed vectors ai (i = 1, 2, 3) along the axes of 

this system, generally speaking, have a different modulus and form the 
main coordinate basis. 

For the vectors skof the mutual basis we have the formulas 

eijXak = six aj, where 

8. ,jk = 3i'(3j ' 3k) (2.1) 

~~~~ is the Levi-Civita tensor [Sl. 

Let us define the vector for angular rotation by the relationship [71 

. d3i . is the angular o;:= dl .3'- 
velocity tensor 

We have “‘1 = sfjk~k, and differentiating the radius-vector r = riai 
. 

of a point on the body, we find its velocity ~1 = E;fir'~~; thereafter 

we have the vector 

x= s rxvdm or xi = Aiscod A, = eiki elks 5 rI,jdm) 

where A is is the inertia tensor. Since det lAisl f 0 then as = as’xi. 

The symmetric tensor asa can be naturally called a gyration tensor. Let 

us substitute x = t~3~, y = riai, e = eiai; into equations 

dxjdt = e x 7, drldt = 0 

characterizing the variation of the angular momentum of the body and 

the constancy of the vector y in the fixed coordinate system. 

We then obtain 

dxi I dt + c3ikok’xtxj = 6kjieky3 (2.2) 

d+ I dt f ajikak’xlyi = 0 (2.3) 

The closed system of Euler equations is of sixth order. The following 

integrals are known 

. . 
l/aa’3xixj - eir’ = h, xiy’ = m, TiT’ = y= (2.4) 

In the following the easily verifiable relationship is used 
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6imn6* 
rkj Us em 

. ‘w k. _ , , - g;;u. .,‘w*: - u* .; w.T (gyj = a”*aj is a metric tensor) (2.5) 

stemming from (2.1) and valid for any tensors u+ .;n’ and ~“1. 

Multiplying (2.2) by ei”“e,,,, taking into account (2.5) and the first 

integral in (2.4), we obtain 

while by substituting (2.6) into the second and third integral in (2.4) 
we find 

dmtiemx,, (dxll dt -+ sitiaklxlxj) -i- enx,, (Vllaisxps - h) = rn 

g’ (dx,/dt f 6jikak1,(,j) (dz,/dt $ 6p,,mUmnXnzp) + ('/06SP$zp-hhl f+ T" 
(2.7) 

Along with the equation 

obtainable from (2.2), equations (2.7) constitute a system of third 
order. 

Substituting now (2.6) into (2.3) we obtain 

uiki ekb”xi 1 dt* + (2gi’ake + gi8akt - pait - $“a”‘) e,x,dzt i dt + 

+ 6j 3n dnm (‘/#gkj + g%Zkl) 6kxrn%&6t - h6jlkak’ejzl = 0 (2.9) 

The determinant of EJ f ‘ki ebl is equal to zero and, consequently. a 
certain linear combination of equations (2.9) does not contain second 
derivatives. Multiplying (2.9) by eit we obtain equation (2.8) which 
along with the two eguations in (2.9). constitutes a system of fifth 
order. 

3. Reduction of the equations of motion to second order. The equa- 
tions (2.7) and (2.8) are written in an arbitrary coordinate system. 
Now we will direct the first coordinate axis through the center of 
gravity of the body. Also e’ 2 3 =e, 6 =e = 0, 6i = gile. and equation 
(2.8) is given by 

dx% / dt + ft’s (g%aer - g2ia3r) xjxt I 0 (3.1) 

where g = det lgij}. Disregarding the known solutions noted in Section 1 
for which x1 = con&, we eliminate t from (2.7) with the aid of (3. l), 
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8s well as with the use of the relationship E lIkek’ = ‘lg (g3ja21 - 

g ‘ja3$ (123) already used in deriving equation (3.1). We obtain 

[(g81z1 - gl& dza I dx, - k,, zl- g,,s3 dz, / dql (g2’a3’ - g3’a2*) zjzl + 

+ [(g&- &,X$ (gW - g%P) + (g,,z, - g& (gV - gV)l ZjZl + 

+ z1 (‘/*a%pl - h )- m/e= 0 (3.2) 

gas [ ( g%sZ - g%z2’) .xjx,dx, 1 dz, + (g1ja3’ - g3ja”) xjxJ2 + 

+ P kPa31 - g3jca2’) xjxldx, 1 dx, + (g2ja1* - g’ja*‘) xjxJ’ + 

f 2gzs [(a”‘~“’ - $‘,2’) Xjxldxz / dx, f 

+ (g”,” - $ia”) x~x~] [(mask - g’i~““) XiX~dX~I dx, + ($i,l’ - glia2h) x~~k] f 

+('/dxixk - h) - p = 0 

Thus, with the exception of the cases x1 = const, the problem of the 

motion of a heavy rigid body having a fixed point is reduced to two 

ordinary differential equations of first order each. 

Having determined from these equations the dependence of x2 and x3 

on x1, we establish by quadrature the connection between x1 and t from 

(3.1,. 

The quantities yi are then found without integration from formulas 

(2.7) which in this case become 

‘r’ _ dxa ( dxs 
- - 
e 

gal yjg - a’ (-j-j 
_ ) fg2ja31 _ g%2$ xjxr + ($2 + .lglj) xjxr - h 

I2 2a 

ra = glle ($jasr - 1 ?j,2$ x.x d3 + (g2ja11 
1 

\“‘_I 

’ ’ dxl 
- gV) xjx, (23) 

In passing to the special rectangular system of coordinates the equa- 

tions (3.1). (3.2) and (3.3) reduce to (1.10). (1.13) and (1.14). One 

of the equations in (2.9) coincides with (1. lo), while the remaining 

two equations become after elimination of the variable t 

[(aa - a3 Yz + @aY - b,r) 21 & [(aa - eJ Yz + @zY - brz) 212 - 

- I(aa - a3 YZ -I- (b2Y - b,z) X] 
I 

[(2s - ~2) x f 3baz + 2blyI $ f b,ag 
) 

f 

+ (‘/za12 - bla) yS - 2b,b,y2z + [(a - a,) (al - az) + ‘/za,(:, - h21 yza f 

+ ‘lab1 (5a, - 4a) aya -i_ 3ba (aa - 43 xyz -k ‘lzb, @a - ~2) xza -k 

+ {x2 [2 (bla + bz2) - 1/za (2~ - 3a,)]- ha,} y + 3/aab,xz - &x = 0 (12). cur) (3.41 

Evidently, (1.13) are the first integrals of the equations (3.4). In 

particular, if the body center of gravity is on one of the Principal 
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axes of the gyrational ellipsoid, then (3.4) yield the equations of 

Chaplygin-Kowalewski. Indeed, letting b, = b2 = 0, a = l/A, al = l/B, 

=2 = l/C, x = Ap, y = Bq, z = Cr we obtain from (3.4) 

+ Aqw + [2 (C - A) (C - B) + AC] 9 + A @A - 2B) Pa - 2hA = 0 (cl?)* (B’3 

Introducing now the new variables 

B-C a = A q=, 
r -. B - C ra 

A 

we obtain the Kowalewski equations. The Chaplygin equations are obtained 

with 

AC-A 2 
42=BB_c P2--T 

AA-B -- 
+=c B-_C 
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